Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 10: 1116925, 2023.
Article in English | MEDLINE | ID: mdl-37283586

ABSTRACT

Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.

2.
Proc Natl Acad Sci U S A ; 120(4): e2217687120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649430

ABSTRACT

The heart develops in a synchronized sequence of proliferation and differentiation of cardiac progenitor cells (CPCs) from two anatomically distinct pools of cells, the first heart field (FHF) and second heart field (SHF). Congenital heart defects arise upon dysregulation of these processes, many of which are restricted to derivatives of the FHF or SHF. Of the conserved set of signaling pathways that regulate development, the Wnt signaling pathway has long been known for its importance in SHF development. The source of such Wnts has remained elusive, though it has been postulated that these Wnts are secreted from ectodermal or endodermal sources. The central question remains unanswered: Where do these Wnts come from? Here, we show that CPCs autoregulate SHF development via Wnt through genetic manipulation of a key Wnt export protein (Wls), scRNA-seq analysis of CPCs, and use of our precardiac organoid system. Through this, we identify dysregulated developmental trajectories of anterior SHF cell fate, leading to a striking single ventricle phenotype in knockout embryos. We then applied our findings to our precardiac organoid model and found that Wnt2 is sufficient to restore SHF cell fate in our model of disrupted endogenous Wnt signaling. In this study, we provide a basis for SHF cell fate decision-proliferation vs. differentiation-autoregulated by CPCs through Wnt.


Subject(s)
Heart Defects, Congenital , Heart , Humans , Heart/physiology , Cell Differentiation , Wnt Signaling Pathway , Wnt Proteins/genetics , Wnt Proteins/metabolism , Gene Expression Regulation, Developmental
3.
Emerg Infect Dis ; 28(13): S17-S25, 2022 12.
Article in English | MEDLINE | ID: mdl-36502383

ABSTRACT

We developed surveillance guidance for COVID-19 in 9 temporary camps for displaced persons along the Thailand-Myanmar border. Arrangements were made for testing of persons presenting with acute respiratory infection, influenza-like illness, or who met the Thailand national COVID-19 Person Under Investigation case definition. In addition, testing was performed for persons who had traveled outside of the camps in outbreak-affected areas or who departed Thailand as resettling refugees. During the first 18 months of surveillance, May 2020-October 2021, a total of 6,190 specimens were tested, and 15 outbreaks (i.e., >1 confirmed COVID-19 cases) were detected in 7 camps. Of those, 5 outbreaks were limited to a single case. Outbreaks during the Delta variant surge were particularly challenging to control. Adapting and implementing COVID-19 surveillance measures in the camp setting were successful in detecting COVID-19 outbreaks and preventing widespread disease during the initial phase of the pandemic in Thailand.


Subject(s)
COVID-19 , Refugees , Respiratory Tract Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics
4.
Sci Adv ; 7(49): eabh4181, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34851661

ABSTRACT

Neurons can regulate the development, pathogenesis, and regeneration of target organs. However, the role of neurons during heart development and regeneration remains unclear. We genetically inhibited sympathetic innervation in vivo, which resulted in heart enlargement with an increase in cardiomyocyte number. Transcriptomic and protein analysis showed down-regulation of the two clock gene homologs Period1/Period2 (Per1/Per2) accompanied by up-regulation of cell cycle genes. Per1/Per2 deletion increased heart size and cardiomyocyte proliferation, recapitulating sympathetic neuron­deficient hearts. Conversely, increasing sympathetic activity by norepinephrine treatment induced Per1/Per2 and suppressed cardiomyocyte proliferation. We further found that the two clock genes negatively regulate myocyte mitosis entry through the Wee1 kinase pathway. Our findings demonstrate a previously unknown link between cardiac neurons and clock genes in regulation of cardiomyocyte proliferation and heart size and provide mechanistic insights for developing neuromodulation strategies for cardiac regen5eration.

5.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008804

ABSTRACT

Pulmonary hypertension is a serious clinical condition characterised by increased pulmonary arterial pressure. This can lead to right ventricular failure which can be fatal. Connexins are gap junction-forming membrane proteins which serve to exchange small molecules of less than 1 kD between cells. Connexins can also form hemi-channels connecting the intracellular and extracellular environments. Hemi-channels can mediate adenosine triphosphate release and are involved in autocrine and paracrine signalling. Recently, our group and others have identified evidence that connexin-mediated signalling may be involved in the pathogenesis of pulmonary hypertension. In this review, we discuss the evidence that dysregulated connexin-mediated signalling is associated with pulmonary hypertension.


Subject(s)
Connexins/metabolism , Hypertension, Pulmonary/metabolism , Signal Transduction , Animals , Disease Models, Animal , Gap Junctions/metabolism , Humans , Hypertension, Pulmonary/pathology
6.
Pflugers Arch ; 473(4): 611-622, 2021 04.
Article in English | MEDLINE | ID: mdl-33145641

ABSTRACT

Alternative splicing of exon 24 (E24) of the myosin phosphatase regulatory subunit (Mypt1) tunes smooth muscle sensitivity to NO/cGMP-mediated vasorelaxation and thereby controls blood pressure (BP) in otherwise normal mice. This occurs via the toggling in or out of a C-terminal leucine zipper (LZ) motif required for hetero-dimerization with and activation by cGMP-dependent protein kinase cGK1α. Here we tested the hypothesis that editing (deletion) of E24, by shifting to the LZ positive isoform of Mypt1, would suppress the hypertensive response to angiotensin II (AngII). To test this, mice underwent tamoxifen-inducible and smooth muscle-specific deletion of E24 (E24 cKO) at age 6 weeks followed by a chronic slow-pressor dose of AngII (400 ng/kg/min) plus additional stressors. E24 cKO suppressed the hypertensive response to AngII alone or with the addition of a high salt diet. This effect was not a function of altered salt balance as there were no differences in intake or renal excretion of sodium. This effect was NO dependent as L-NAME in the drinking water caused an exaggerated hypertensive response in the E24cKO mice. E24cKO mouse mesenteric arteries were more sensitive to DEA/NO-induced vasorelaxation and less responsive to AngII- and α-adrenergic-induced vasoconstriction at baseline. Only the latter two effects were still present after 2 weeks of chronic AngII treatment. We conclude that editing of Mypt1 E24, by shifting the expression of naturally occurring isoforms and sensitizing to NO-mediated vasodilation, could be a novel approach to the treatment of human hypertension.


Subject(s)
Angiotensin II/metabolism , Hypertension/metabolism , Myosin-Light-Chain Phosphatase/genetics , Nitric Oxide/metabolism , Vasodilation , Animals , Hypertension/genetics , Hypertension/physiopathology , Leucine Zippers , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Mutation , Myosin-Light-Chain Phosphatase/chemistry , Myosin-Light-Chain Phosphatase/metabolism
7.
Int J Mol Sci ; 19(7)2018 06 27.
Article in English | MEDLINE | ID: mdl-29954114

ABSTRACT

Pulmonary arterial hypertension (PAH) is a chronic condition characterized by vascular remodeling and increased vaso-reactivity. PAH is more common in females than in males (~3:1). Connexin (Cx)43 has been shown to be involved in cellular communication within the pulmonary vasculature. Therefore, we investigated the role of Cx43 in pulmonary vascular reactivity using Cx43 heterozygous (Cx43+/−) mice and 37,43Gap27, which is a pharmacological inhibitor of Cx37 and Cx43. Contraction and relaxation responses were studied in intra-lobar pulmonary arteries (IPAs) derived from normoxic mice and hypoxic mice using wire myography. IPAs from male Cx43+/− mice displayed a small but significant increase in the contractile response to endothelin-1 (but not 5-hydroxytryptamine) under both normoxic and hypoxic conditions. There was no difference in the contractile response to endothelin-1 (ET-1) or 5-hydroxytryptamine (5-HT) in IPAs derived from female Cx43+/−mice compared to wildtype mice. Relaxation responses to methacholine (MCh) were attenuated in IPAs from male and female Cx43+/− mice or by pre-incubation of IPAs with 37,43Gap27. Nω-Nitro-L-arginine methyl ester (l-NAME) fully inhibited MCh-induced relaxation. In conclusion, Cx43 is involved in nitric oxide (NO)-induced pulmonary vascular relaxation and plays a gender-specific and agonist-specific role in pulmonary vascular contractility. Therefore, reduced Cx43 signaling may contribute to pulmonary vascular dysfunction.


Subject(s)
Connexin 43/metabolism , Pulmonary Artery/metabolism , Animals , Connexin 43/genetics , Endothelin-1/metabolism , Female , Gap Junctions/drug effects , Gap Junctions/metabolism , Genotype , Hypertension, Pulmonary/metabolism , Isoproterenol/pharmacology , Male , Mice , Mice, Inbred C57BL , Muscle Relaxation/drug effects , Nitric Oxide/metabolism , Pulmonary Artery/drug effects , Real-Time Polymerase Chain Reaction , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...